using lattice boltzmann method to investigate the effects of porous media on heat transfer from solid block inside a channel
نویسندگان
چکیده
a numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. the lattice boltzmann method was applied for numerical simulations. the fluid flow in the porous media was simulated by brinkman-forchheimer model. the effects of parameters such as porosity and thermal conductivity ratio over flow pattern and thermal field were investigated. in this paper the effects of mentioned parameters were discussed in detail. the result show with increasing the thermal conductivity ratio and porosity the fluid temperature will reduce.
منابع مشابه
Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel
A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملnumerical simulation of fluid flow in random granular porous media using lattice boltzmann method
in this paper, fluid flow between two parallel flat plates that are partially filled with two-dimension porous media is investigated numerically using single relaxation time (srt) lattice boltzmann method (lbm) at pore scale. the considered obstacles are random, circular, rigid and granular with uniform diameters. single component and single-phase viscous newtonian fluid are considered as worki...
متن کاملElectrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
The electrokinetic pumping characteristics of nanoscale charged porous media packed in microchannels are investigated using a mesoscopic evolution method. When the pore size of porous media is comparable to the thickness of electric double layer, the effects of particle surface potentials on the bulk electric potential distribution will not be negligible. The lattice Poisson-Boltzmann method pr...
متن کاملFluid Flow in Porous Media with the Lattice-boltzmann Method
Aaltosalmi, Urpo Fluid flow in porous media with the lattice-Boltzmann method Jyväskylä: University of Jyväskylä, 2005, 158 p. (Research report/Department of Physics, University of Jyväskylä, ISSN 0075-465X; 3/2005) ISBN 951-39-2222-7 Diss. The lattice-Boltzmann method has recently become a useful approach for computational fluid dynamics. Simple implementation of boundary conditions together w...
متن کاملinvestigation of pore-scale random porous media using lattice boltzmann method
the permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the lattice boltzmann method (lbm). effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. two major models of random porous media were reconstructed by computerized tomography method: randomly distributed rectangular obstacles in a uni...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
transport phenomena in nano and micro scalesناشر: university of sistan and baluchestan, iranian society of mechanical engineers
ISSN 2322-3634
دوره 1
شماره 2 2013
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023